§ 429.24

$$LCL = \overline{x} - t_{.975} \left( \frac{s}{\sqrt{n}} \right)$$

And  $\overline{x}$  is the sample mean; s is the sample standard deviation; n is the number of samples; and  $t_{0.975}$  is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).

- (b) Certification reports. (1) The requirements of §429.12 are applicable to conventional cooking tops, conventional ovens and microwave ovens; and
- (2) Pursuant to §429.12(b)(13), a certification report shall include the following public product-specific information: The type of pilot light and a declaration that the manufacturer has incorporated the applicable design requirements.

[76 FR 12451, Mar. 7, 2011; 76 FR 24769, May 2, 2011, as amended at 77 FR 65977, Oct. 31, 2012]

#### § 429.24 Pool heaters.

- (a) Sampling plan for selection of units for testing. (1) The requirements of §429.11 are applicable to pool heaters; and
- (2) For each basic model of pool heater a sample of sufficient size shall be randomly selected and tested to ensure that any represented value of the thermal efficiency or other measure of energy consumption of a basic model for which consumers would favor higher values shall be less than or equal to the lower of:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and,  $\overline{x}$  is the sample mean; n is the number of samples; and  $x_i$  is the  $i^{th}$  sample;

- (i) The mean of the sample, where: Or,
- (ii) The lower 97½ percent confidence limit (LCL) of the true mean divided by 0.95, where:

$$LCL = \bar{x} - t_{.975} \left( \frac{s}{\sqrt{n}} \right)$$

And  $\overline{x}$  is the sample mean; s is the sample standard deviation; n is the number of samples; and  $t_{0.975}$  is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).

## 10 CFR Ch. II (1-1-13 Edition)

# § 429.25

- (b) *Certification reports*. (1) The requirements of §429.12 are applicable to pool heaters; and
- (2) Pursuant to §429.12(b)(13), a certification report shall include the following public product-specific information: The thermal efficiency in percent (%) and the input capacity in British thermal units per hour (Btu/h).

[76 FR 12451, Mar. 7, 2011; 76 FR 24769, May 2, 2011]

### § 429.25 Television sets. [Reserved]

### § 429.26 Fluorescent lamp ballasts.

(a) Sampling plan for selection of units for testing. (1) The requirements of

- §429.11 are applicable to fluorescent lamp ballasts; and
- (2) For each basic model of fluorescent lamp ballasts, a sample of sufficient size, not less than four, shall be randomly selected and tested to ensure that—
- (i) Any represented value of estimated annual energy operating costs, energy consumption, or other measure of energy consumption of a basic model for which consumers would favor lower values shall be greater than or equal to the higher of:
  - (A) The mean of the sample, where:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and,  $\bar{x}$  is the sample mean; n is the number of samples; and  $x_i$  is the i<sup>th</sup> sample;

 $\stackrel{\frown}{(B)}$  The upper 99 percent confidence limit (UCL) of the true mean divided by 1.01, where:

$$UCL = \bar{x} + t_{.99} \left( \frac{s}{\sqrt{n}} \right)$$

And  $\overline{x}$  is the sample mean; s is the sample standard deviation; n is the number of samples; and  $t_{0.99}$  is the t statistic for a 99% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).

and

(ii) Any represented value of the ballast efficacy factor or other measure of the energy consumption of a basic

model for which consumers would favor a higher value shall be less than or equal to the lower of:

(A) The mean of the sample, where:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and,  $\bar{x}$  is the sample mean; n is the number of samples; and  $x_i$  is the i<sup>th</sup> sample; Or,

(B) The lower 99 percent confidence limit (LCL) of the true mean divided by 0.99, where: